Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Plant Sci ; 14: 1133299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465386

RESUMO

Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal. Still, IPP/DMAPP are the precursors to many plant developmental hormones. This creates severe challenges in redirecting IPP/DMAPP towards production of non-cognate plant metabolites. A potential solution to this problem is increasing the IPP/DMAPP production flux in planta. Here, we aimed at discovering, understanding, and predicting the effects of increasing IPP/DMAPP production in plants through modelling. We used synthetic biology to create rice lines containing an additional ectopic MVA biosynthetic pathway for producing IPP/DMAPP. The rice lines express three alternative versions of the additional MVA pathway in the plastid, in addition to the normal endogenous pathways. We collected data for changes in macroscopic and molecular phenotypes, gene expression, isoprenoid content, and hormone abundance in those lines. To integrate the molecular and macroscopic data and develop a more in depth understanding of the effects of engineering the exogenous pathway in the mutant rice lines, we developed and analyzed data-centric, line-specific, multilevel mathematical models. These models connect the effects of variations in hormones and gene expression to changes in macroscopic plant phenotype and metabolite concentrations within the MVA and MEP pathways of WT and mutant rice lines. Our models allow us to predict how an exogenous IPP/DMAPP biosynthetic pathway affects the flux of terpenoid precursors. We also quantify the long-term effect of plant hormones on the dynamic behavior of IPP/DMAPP biosynthetic pathways in seeds, and predict plant characteristics, such as plant height, leaf size, and chlorophyll content from molecular data. In addition, our models are a tool that can be used in the future to help in prioritizing re-engineering strategies for the exogenous pathway in order to achieve specific metabolic goals.

2.
Front Plant Sci ; 14: 1329556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273953

RESUMO

Maize is the most in-demand staple crop globally. Its production relies strongly on the use of fertilizers for the supply of nitrogen, phosphorus, and potassium, which the plant absorbs through its roots, together with water. The architecture of maize roots is determinant in modulating how the plant interacts with the microbiome and extracts nutrients and water from the soil. As such, attempts to use synthetic biology and modulate that architecture to make the plant more resilient to drought and parasitic plants are underway. These attempts often try to modulate the biosynthesis of hormones that determine root architecture and growth. Experiments are laborious and time-consuming, creating the need for simulation platforms that can integrate metabolic models and 3D root growth models and predict the effects of synthetic biology interventions on both, hormone levels and root system architectures. Here, we present an example of such a platform that is built using Mathematica. First, we develop a root model, and use it to simulate the growth of many unique 3D maize root system architectures (RSAs). Then, we couple this model to a metabolic model that simulates the biosynthesis of strigolactones, hormones that modulate root growth and development. The coupling allows us to simulate the effect of changing strigolactone levels on the architecture of the roots. We then integrate the two models in a simulation platform, where we also add the functionality to analyze the effect of strigolactone levels on root phenotype. Finally, using in silico experiments, we show that our models can reproduce both the phenotype of wild type maize, and the effect that varying strigolactone levels have on changing the architecture of maize roots.

3.
Front Plant Sci ; 13: 979162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119618

RESUMO

Strigolactones mediate plant development, trigger symbiosis with arbuscular mycorrhizal fungi, are abundant in 80% of the plant kingdom and help plants gain resistance to environmental stressors. They also induce germination of parasitic plant seeds that are endemic to various continents, such as Orobanche in Europe or Asia and Striga in Africa. The genes involved in the early stages of strigolactones biosynthesis are known in several plants. The regulatory structure and the latter parts of the pathway, where flux branching occurs to produce alternative strigolactones, are less well-understood. Here we present a computational study that collects the available experimental evidence and proposes alternative biosynthetic pathways that are consistent with that evidence. Then, we test the alternative pathways through in silico simulation experiments and compare those experiments to experimental information. Our results predict the differences in dynamic behavior between alternative pathway designs. Independent of design, the analysis suggests that feedback regulation is unlikely to exist in strigolactone biosynthesis. In addition, our experiments suggest that engineering the pathway to modulate the production of strigolactones could be most easily achieved by increasing the flux of ß-carotenes going into the biosynthetic pathway. Finally, we find that changing the ratio of alternative strigolactones produced by the pathway can be done by changing the activity of the enzymes after the flux branching points.

4.
Front Plant Sci ; 13: 893095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812979

RESUMO

The evolution of Crassulacean acid metabolism (CAM) by plants has been one of the most successful strategies in response to aridity. On the onset of climate change, expanding the use of water efficient crops and engineering higher water use efficiency into C3 and C4 crops constitute a plausible solution for the problems of agriculture in hotter and drier environments. A firm understanding of CAM is thus crucial for the development of agricultural responses to climate change. Computational models on CAM can contribute significantly to this understanding. Two types of models have been used so far. Early CAM models based on ordinary differential equations (ODE) reproduced the typical diel CAM features with a minimal set of components and investigated endogenous day/night rhythmicity. This line of research brought to light the preponderant role of vacuolar malate accumulation in diel rhythms. A second wave of CAM models used flux balance analysis (FBA) to better understand the role of CO2 uptake in flux distribution. They showed that flux distributions resembling CAM metabolism emerge upon constraining CO2 uptake by the system. We discuss the evolutionary implications of this and also how CAM components from unrelated pathways could have integrated along evolution.

5.
Nutrients ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35276884

RESUMO

This study aimed to determine how the microbiota profile might be predisposed to a better response in blood lipid profiles due to dietary fibre supplementation. A three-arm intervention study that included three different fibre types (mainly insoluble, soluble, and antioxidant fibre) supplemented (19.2 g/day) during 2 months in individuals with hypercholesterolemia was developed. Changes in faecal microbiota and blood lipid profile after fibre supplementation were determined. In all volunteers, regardless of fibre type, an increase in the abundance of Bifidobacterium was observed, and similarly, an inverse relationship between faecal propionic acid and blood LDL-cholesterol, LDL particle size, and LDL/HDL particle ratio (p-values 0.0067, 0.0002, and 0.0067, respectively) was observed. However, not all volunteers presented an improvement in lipid profile. The non-responders to fibre treatment showed a decrease in microbiota diversity (Shannon and Simpson diversity index p-values of 0.0110 and 0.0255, respectively) after the intervention; where the reduction in short-chain fatty acids (SCFAs) producing bacterial genera such as Clostridium XIVa and Ruminococcus after dietary fibre treatment was the main difference. It was concluded that the non-responsiveness to dietary fibre treatment might be mediated by the lack of ability to maintain a stable SCFA producing bacteria diversity and composition after extra fibre intake.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Microbiota , Fibras na Dieta , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/fisiologia , Humanos
6.
Transgenic Res ; 31(2): 249-268, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35201538

RESUMO

Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the native MVA pathway could be circumvented by expressing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid-targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription factor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohydrates and fatty acids, and (3) the macroscopic phenotype including seed morphology. We found that the ectopic plastidial MVA pathway enhanced the expression of endogenous cytosolic MVA pathway genes while suppressing the native plastidial MEP pathway, increasing the production of certain sterols and tocopherols. Plants carrying the ectopic MVA pathway only survived if WR1 was also expressed to replenish the plastid acetyl-CoA pool. The transgenic plants produced higher levels of fatty acids, abscisic acid, gibberellins and lutein, reflecting crosstalk between phytohormones and secondary metabolism.


Assuntos
Oryza , Ácidos Graxos , Ácido Mevalônico/metabolismo , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Terpenos/metabolismo
7.
PeerJ ; 9: e11558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178454

RESUMO

Phosphorelays are signal transduction circuits that sense environmental changes and adjust cellular metabolism. Five different circuit architectures account for 99% of all phosphorelay operons annotated in over 9,000 fully sequenced genomes. Here we asked what biological design principles, if any, could explain selection among those architectures in nature. We began by studying kinetically well characterized phosphorelays (Spo0 of Bacillus subtilis and Sln1 of Saccharomyces cerevisiae). We find that natural circuit architecture maximizes information transmission in both cases. We use mathematical models to compare information transmission among the architectures for a realistic range of concentration and parameter values. Mapping experimentally determined phosphorelay protein concentrations onto that range reveals that the native architecture maximizes information transmission in sixteen out of seventeen analyzed phosphorelays. These results suggest that maximization of information transmission is important in the selection of native phosphorelay architectures, parameter values and protein concentrations.

8.
Nat Commun ; 10(1): 5169, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727889

RESUMO

The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic.


Assuntos
Dioxigenases/metabolismo , Frutas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metaboloma , Solanum/metabolismo , Paladar , Alcaloides/química , Alcaloides/metabolismo , Biocatálise , Genes de Plantas , Hidroxilação , Ácidos Cetoglutáricos/química , Locos de Características Quantitativas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Esteroides/química , Esteroides/metabolismo
9.
Ultrasound Med Biol ; 44(12): 2780-2792, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30205994

RESUMO

Adventitial vasa vasorum are physiologic microvessels that nourish artery walls. In the presence of cardiovascular risk factors, these microvessels proliferate abnormally. Studies have reported that they are the first stage of atheromatous disease. Contrast-enhanced ultrasound (CEUS) of the carotid allows direct, quantitative and non-invasive visualization of the adventitial vasa vasorum. Hence, the development of computer-assisted methods that speed image analysis and eliminate user subjectivity is important. We developed methods for automatic analyses and quantification of vasa vasorum neovascularization in CEUS and tested these methods in a cohort of 186 individuals, 63 of whom were healthy volunteers. We implemented alternative automatic strategies for using the images to stratify patients according to their risk group and compare the strategies with respect to diagnostic performance. An automatic single-parameter strategy performs less effectively than the corresponding Arcidiacono method based on manual interpretation of the images (68 < area under the receiver operating characteristic curve [AUROC] for the manual Arcidiacono method < 82; 60 < AUROC for the automatic single-parameter strategy < 63). However, by use of additional image parameters, an automatic multiparameter strategy has significantly improved performance with respect to the manual Arcidiacono method (78 < AUROC < 90). The automatic multiparameter strategy is a valuable alternative to the manual Arcidiacono method, improving both diagnostic speed and diagnostic accuracy.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Vasa Vasorum/diagnóstico por imagem , Adulto , Idoso , Artérias Carótidas/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Espanha , Adulto Jovem
10.
Cell Rep ; 22(9): 2421-2430, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490277

RESUMO

Microorganisms evolved adaptive responses to survive stressful challenges in ever-changing environments. Understanding the relationships between the physiological/metabolic adjustments allowing cellular stress adaptation and gene expression changes being used by organisms to achieve such adjustments may significantly impact our ability to understand and/or guide evolution. Here, we studied those relationships during adaptation to various stress challenges in Saccharomyces cerevisiae, focusing on heat stress responses. We combined dozens of independent experiments measuring whole-genome gene expression changes during stress responses with a simplified kinetic model of central metabolism. We identified alternative quantitative ranges for a set of physiological variables in the model (production of ATP, trehalose, NADH, etc.) that are specific for adaptation to either heat stress or desiccation/rehydration. Our approach is scalable to other adaptive responses and could assist in developing biotechnological applications to manipulate cells for medical, biotechnological, or synthetic biology purposes.


Assuntos
Adaptação Fisiológica , Resposta ao Choque Térmico , Saccharomyces cerevisiae/fisiologia , Evolução Molecular , Estudos de Viabilidade , Regulação Fúngica da Expressão Gênica , Genótipo , Concentração de Íons de Hidrogênio , Fenótipo , Saccharomyces cerevisiae/genética
11.
PeerJ ; 4: e2211, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547534

RESUMO

Introduction. Most documented rare diseases have genetic origin. Because of their low individual frequency, an initial diagnosis based on phenotypic symptoms is not always easy, as practitioners might never have been exposed to patients suffering from the relevant disease. It is thus important to develop tools that facilitate symptom-based initial diagnosis of rare diseases by clinicians. In this work we aimed at developing a computational approach to aid in that initial diagnosis. We also aimed at implementing this approach in a user friendly web prototype. We call this tool Rare Disease Discovery. Finally, we also aimed at testing the performance of the prototype. Methods. Rare Disease Discovery uses the publicly available ORPHANET data set of association between rare diseases and their symptoms to automatically predict the most likely rare diseases based on a patient's symptoms. We apply the method to retrospectively diagnose a cohort of 187 rare disease patients with confirmed diagnosis. Subsequently we test the precision, sensitivity, and global performance of the system under different scenarios by running large scale Monte Carlo simulations. All settings account for situations where absent and/or unrelated symptoms are considered in the diagnosis. Results. We find that this expert system has high diagnostic precision (≥80%) and sensitivity (≥99%), and is robust to both absent and unrelated symptoms. Discussion. The Rare Disease Discovery prediction engine appears to provide a fast and robust method for initial assisted differential diagnosis of rare diseases. We coupled this engine with a user-friendly web interface and it can be freely accessed at http://disease-discovery.udl.cat/. The code and most current database for the whole project can be downloaded from https://github.com/Wrrzag/DiseaseDiscovery/tree/no_classifiers.

12.
PLoS One ; 11(6): e0158424, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362362

RESUMO

Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase.


Assuntos
Calcineurina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae , ATPase Trocadora de Sódio-Potássio/genética , Estresse Fisiológico/genética , Fatores de Transcrição/fisiologia , Transporte Ativo do Núcleo Celular/genética , Sítios de Ligação/genética , Calcineurina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Organismos Geneticamente Modificados , Regiões Promotoras Genéticas , Transporte Proteico , Elementos Reguladores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/metabolismo
13.
Plant J ; 87(5): 455-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155093

RESUMO

Plant synthetic biology is still in its infancy. However, synthetic biology approaches have been used to manipulate and improve the nutritional and health value of staple food crops such as rice, potato and maize. With current technologies, production yields of the synthetic nutrients are a result of trial and error, and systematic rational strategies to optimize those yields are still lacking. Here, we present a workflow that combines gene expression and quantitative metabolomics with mathematical modeling to identify strategies for increasing production yields of nutritionally important carotenoids in the seed endosperm synthesized through alternative biosynthetic pathways in synthetic lines of white maize, which is normally devoid of carotenoids. Quantitative metabolomics and gene expression data are used to create and fit parameters of mathematical models that are specific to four independent maize lines. Sensitivity analysis and simulation of each model is used to predict which gene activities should be further engineered in order to increase production yields for carotenoid accumulation in each line. Some of these predictions (e.g. increasing Zmlycb/Gllycb will increase accumulated ß-carotenes) are valid across the four maize lines and consistent with experimental observations in other systems. Other predictions are line specific. The workflow is adaptable to any other biological system for which appropriate quantitative information is available. Furthermore, we validate some of the predictions using experimental data from additional synthetic maize lines for which no models were developed.


Assuntos
Carotenoides/metabolismo , Modelos Teóricos , Zea mays/metabolismo , Biologia Computacional/métodos , Metabolômica/métodos
14.
PeerJ ; 3: e1183, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339559

RESUMO

Two Component Systems and Phosphorelays (TCS/PR) are environmental signal transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal domain organization of proteins and the topology of TCS/PR cascades play an important role in shaping the responses of the circuits. It is thus important to maintain updated censuses of TCS/PR proteins in order to identify the various topologies used by nature and enable a systematic study of the dynamics associated with those topologies. To create such a census, we analyzed the proteomes of 7,609 organisms from all domains of life with fully sequenced and annotated genomes. To begin, we survey each proteome searching for proteins containing domains that are associated with internal signal transmission within TCS/PR: Histidine Kinase (HK), Response Regulator (RR) and Histidine Phosphotranfer (HPt) domains, and analyze how these domains are arranged in the individual proteins. Then, we find all types of operon organization and calculate how much more likely are proteins that contain TCS/PR domains to be coded by neighboring genes than one would expect from the genome background of each organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is more frequently observed than one might expect from the background of each proteome. We find 50 alternative ways in which the HK, HPt, and RR domains are observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in this study contain just one of the three domains, while 8% of the remaining proteins combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than one domain. These results might have implications for how signals are internally transmitted within TCS/PR cascades. These implications could explain the selection of the various designs in alternative circumstances.

15.
PLoS One ; 9(5): e97459, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24832200

RESUMO

OBJECTIVE: To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. METHODS: A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. RESULTS: Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. CONCLUSIONS: Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/economia , Detecção Precoce de Câncer/economia , Mamografia/economia , Programas de Rastreamento/economia , Idoso , Envelhecimento , Simulação por Computador , Feminino , Custos de Cuidados de Saúde , Humanos , Mamografia/métodos , Pessoa de Meia-Idade , Modelos Econômicos , Probabilidade , Avaliação de Programas e Projetos de Saúde , Intensificação de Imagem Radiográfica/métodos , Sensibilidade e Especificidade , Espanha
16.
PLoS One ; 9(2): e86858, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498285

RESUMO

The one-size-fits-all paradigm in organized screening of breast cancer is shifting towards a personalized approach. The present study has two objectives: 1) To perform an economic evaluation and to assess the harm-benefit ratios of screening strategies that vary in their intensity and interval ages based on breast cancer risk; and 2) To estimate the gain in terms of cost and harm reductions using risk-based screening with respect to the usual practice. We used a probabilistic model and input data from Spanish population registries and screening programs, as well as from clinical studies, to estimate the benefit, harm, and costs over time of 2,624 screening strategies, uniform or risk-based. We defined four risk groups, low, moderate-low, moderate-high and high, based on breast density, family history of breast cancer and personal history of breast biopsy. The risk-based strategies were obtained combining the exam periodicity (annual, biennial, triennial and quinquennial), the starting ages (40, 45 and 50 years) and the ending ages (69 and 74 years) in the four risk groups. Incremental cost-effectiveness and harm-benefit ratios were used to select the optimal strategies. Compared to risk-based strategies, the uniform ones result in a much lower benefit for a specific cost. Reductions close to 10% in costs and higher than 20% in false-positive results and overdiagnosed cases were obtained for risk-based strategies. Optimal screening is characterized by quinquennial or triennial periodicities for the low or moderate risk-groups and annual periodicity for the high-risk group. Risk-based strategies can reduce harm and costs. It is necessary to develop accurate measures of individual risk and to work on how to implement risk-based screening strategies.


Assuntos
Neoplasias da Mama/diagnóstico , Carcinoma Intraductal não Infiltrante/diagnóstico , Programas de Rastreamento/economia , Modelos Econômicos , Medição de Risco/economia , Adulto , Idoso , Análise Custo-Benefício , Feminino , Humanos , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Anos de Vida Ajustados por Qualidade de Vida , Sistema de Registros/estatística & dados numéricos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espanha
17.
Plant J ; 77(3): 464-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24267591

RESUMO

We have developed an assay based on rice embryogenic callus for rapid functional characterization of metabolic genes. We validated the assay using a selection of well-characterized genes with known functions in the carotenoid biosynthesis pathway, allowing rapid visual screening of callus phenotypes based on tissue color. We then used the system to identify the functions of two uncharacterized genes: a chemically synthesized ß-carotene ketolase gene optimized for maize codon usage, and a wild-type Arabidopsis thaliana ortholog of the cauliflower Orange gene. In contrast to previous reports (Lopez, A.B., Van Eck, J., Conlin, B.J., Paolillo, D.J., O'Neill, J. and Li, L. () J. Exp. Bot. 59, 213-223; Lu, S., Van Eck, J., Zhou, X., Lopez, A.B., O'Halloran, D.M., Cosman, K.M., Conlin, B.J., Paolillo, D.J., Garvin, D.F., Vrebalov, J., Kochian, L.V., Küpper, H., Earle, E.D., Cao, J. and Li, L. () Plant Cell 18, 3594-3605), we found that the wild-type Orange allele was sufficient to induce chromoplast differentiation. We also found that chromoplast differentiation was induced by increasing the availability of precursors and thus driving flux through the pathway, even in the absence of Orange. Remarkably, we found that diverse endosperm-specific promoters were highly active in rice callus despite their restricted activity in mature plants. Our callus system provides a unique opportunity to predict the effect of metabolic engineering in complex pathways, and provides a starting point for quantitative modeling and the rational design of engineering strategies using synthetic biology. We discuss the impact of our data on analysis and engineering of the carotenoid biosynthesis pathway.


Assuntos
Arabidopsis/enzimologia , Carotenoides/metabolismo , Chlamydomonas reinhardtii/enzimologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Vias Biossintéticas , Carotenoides/análise , Diferenciação Celular , Chlamydomonas reinhardtii/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Engenharia Metabólica , Metaboloma , Metabolômica , Modelos Teóricos , Oryza/citologia , Oryza/genética , Oxigenases/síntese química , Oxigenases/genética , Oxigenases/metabolismo , Fenótipo , Proteínas de Plantas/síntese química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Regiões Promotoras Genéticas/genética , Transferases/genética , Transferases/metabolismo , Transgenes
18.
Plant J ; 75(3): 441-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23607313

RESUMO

Carotenoids are a diverse group of tetraterpenoid pigments found in plants, fungi, bacteria and some animals. They play vital roles in plants and provide important health benefits to mammals, including humans. We previously reported the creation of a diverse population of transgenic maize plants expressing various carotenogenic gene combinations and exhibiting distinct metabolic phenotypes. Here we performed an in-depth targeted mRNA and metabolomic analysis of the pathway to characterize the specific impact of five carotenogenic transgenes and their interactions with 12 endogenous genes in four transgenic lines representing distinct genotypes and phenotypes. We reconstructed the temporal profile of the carotenoid pathway during endosperm development at the mRNA and metabolic levels (for total and individual carotenoids), and investigated the impact of transgene expression on the endogenous pathway. These studies enabled us to investigate the extent of any interactions between the introduced transgenic and native partial carotenoid pathways during maize endosperm development. Importantly, we developed a theoretical model that explains these interactions, and our results suggest genetic intervention points that may allow the maize endosperm carotenoid pathway to be engineered in a more effective and predictable manner.


Assuntos
Carotenoides/genética , Carotenoides/metabolismo , Plantas Geneticamente Modificadas , Zea mays/genética , Zea mays/metabolismo , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Metaboloma , Reação em Cadeia da Polimerase em Tempo Real/métodos , Xantofilas/metabolismo
19.
PLoS One ; 7(2): e31095, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363555

RESUMO

Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component") on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.


Assuntos
Transdução de Sinais/fisiologia , Modelos Biológicos , Fosforilação , Proteínas Quinases/metabolismo , Estabilidade Proteica , Processos Estocásticos , Fatores de Tempo
20.
PLoS One ; 7(1): e30157, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272292

RESUMO

BACKGROUND: Reductions in breast cancer (BC) mortality in Western countries have been attributed to the use of screening mammography and adjuvant treatments. The goal of this work was to analyze the contributions of both interventions to the decrease in BC mortality between 1975 and 2008 in Catalonia. METHODOLOGY/PRINCIPAL FINDINGS: A stochastic model was used to quantify the contribution of each intervention. Age standardized BC mortality rates for calendar years 1975-2008 were estimated in four hypothetical scenarios: 1) Only screening, 2) Only adjuvant treatment, 3) Both interventions, and 4) No intervention. For the 30-69 age group, observed Catalan BC mortality rates per 100,000 women-year rose from 29.4 in 1975 to 38.3 in 1993, and afterwards continuously decreased to 23.2 in 2008. If neither of the two interventions had been used, in 2008 the estimated BC mortality would have been 43.5, which, compared to the observed BC mortality rate, indicates a 46.7% reduction. In 2008 the reduction attributable to screening was 20.4%, to adjuvant treatments was 15.8% and to both interventions 34.1%. CONCLUSIONS/SIGNIFICANCE: Screening and adjuvant treatments similarly contributed to reducing BC mortality in Catalonia. Mathematical models have been useful to assess the impact of interventions addressed to reduce BC mortality that occurred over nearly the same periods.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Detecção Precoce de Câncer/métodos , Programas de Rastreamento , Adulto , Idoso , Neoplasias da Mama/mortalidade , Quimioterapia Adjuvante/métodos , Estudos de Coortes , Feminino , Humanos , Incidência , Mamografia , Pessoa de Meia-Idade , Mortalidade/tendências , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA